Operating Manual

7400 East 42nd Place Tulsa, Oklahoma 74145-4744 USA

phone: 918-627-1942 888-628-8258

fax: 918-622-8916

email: sales@controlvalves.com

website: www.controlvalves.com

combination rate of flow control vacuum control and check valve

installation, operating and maintenance instructions

model 120-6PS

GENERAL DESCRIPTION

The OCV Model 120-6PS is a fuel service control valve designed to perform the following functions:

- 1. Modulate as required to prevent flow rate from exceeding a predetermined maximum.
- 2. Prevent the vacuum on the pump suction from exceeding a predetermined amount.
- 3. Close tightly to prevent backflow in the event of pressure reversal.

The 120-6PS consists of the following components, arranged as shown on the schematic diagram.

- 1. **Model 65 Basic Control Valve,** a hydraulically operated, diaphragm actuated, pilot controlled globe valve which closes with an elastomer-on-metal seal.
- 2. An **orifice plate**, integrally mounted in the upstream valve flange, which provides a differential pressure proportional to the flow rate.
- 3. **Model 2450 Rate of Flow Control Pilot,** a twoway, normally open control pilot that senses the differential pressure created by the orifice plate and balances it against an adjustable spring load. An increase in differential above the set point tends to make the pilot close.
- 4. **Model 1340XS Vacuum Control Pilot,** a twoway, normally open control pilot that senses the pump suction line above its diaphragm and balances it against an adjustable spring load. An increase in vacuum above the set point tends to make the pilot close.

- 5. **Model 126 Ejector,** a simple "tee" fitting with a small orifice pressed into its inlet port. The ejector, acting in conjunction with the rate of flow pilot (item 3) and vacuum control pilot (item 4), allows the valve to open, close, and modulate.
- 6. **Model 141-2 Needle Valve,** which controls the speed at which the valve opens.
- 7. Two **Model 141-1** Check Valves, which give the 120-6PS its check valve feature.
- 8. **Model 123 Inline Strainer,** which protects the pilot system from solid contaminants in the line fluid.

7400 East 42nd Place / Tulsa, OK 74145-4744 USA / 918-627-1942 / 888-OCV-VALV / Fax 918-622-8916 e-mail: sales@controlvalves.com / website: www.controlvalves.com

model 120-6PS

9. **Model 155 Visual Indicator,** which enables the operator to determine the valve's operating position at a glance.

THEORY OF OPERATION

RATE OF FLOW CONTROL ACTION: The action of the 120-6PS in its primary mode of rate of flow control is governed by the rate of flow pilot (3) and the ejector (5). The small orifice in the inlet of the ejector may be thought of as a fixed source of inlet pressure. Similarly, the rate of flow pilot may be thought of as a variable exhaust to the downstream side of the valve. Now, the main valve diaphragm chamber is connected to the ejector downstream of the orifice, therefore the pressure applied to the diaphragm is a resultant of the fixed supply provided by the orifice and the variable exhaust provided by the rate of flow pilot. As the pilot moves further open, exhaust becomes greater than supply, pressure on the diaphragm is decreased, and the main valve opens further. Conversely, as the pilot moves further closed, exhaust becomes less than supply, the pressure on the diaphragm is increased, and the main valve closes further.

The rate of flow control pilot moves open or closed based on the differential pressure created across the orifice plate. As the differential, hence the flow rate, increases, the pilot moves further closed. As the differential decreases, the pilot moves further open. As explained above, the main valve follows, or "mirrors" the action of the pilot. The net result is a constant modulation of the pilot and the main valve to hold the flow rate constant.

VACUUM CONTROL ACTION: Note that the vacuum control pilot (4) is connected in series with the rate of flow pilot downstream of the ejector. Thus, its opening and closing will affect the position of the main valve in much the same manner as the rate of flow pilot. Under normal conditions, with vacuum in the pump suction line less than the set point, the vacuum control pilot is wide open and the operation of the vlave is governed by the rate of flow pilot. However, should the vacuum increase beyond the set point, the vacuum control pilot will begin to close, and consequently close the main valve further to prevent the vacuum from increasing any further.

.

pressure becomes higher than inlet pressure, check valve (7B) will open, routing downstream pressure straight to the diaphragm chamber. This will force the main valve fully and tightly closed. At the same time, check valve (7A) will close, preventing any backflow through the pilot system.

INSTALLATION

The 120-6PS is furnished fully factory-assembled, ready for installation at the appropriate point in the system, typically on the discharge of a pump. Please refer to the Model 65 Basic Valve section of this manual for full installation details.

Following main valve installation, a sense line must be run between the bonnet of the vacuum control pilot (4) and the suction side of the pump. For best results, the mimimum size for this line is 1/4" OD tubing.

STARTUP AND ADJUSTMENTS

Please follow these procedures, step-by-step, in performing an initial startup of the 120-6PS. Also, refer to the appropriate steps in the procedures should readjustment ever be required.

- 1. Remove the protective cap from the rate of flow pilot (3). Turn the adjusting screw **fully counter-clockwise.**
- 2. Remove the adjusting screw from the vacuum control pilot (4). Turn the adjusting screw **fully counter-clockwise**, then **clockwise** three full turns.
- 3. Loosen the adjusting screw jam nut on the needle valve (6). Turn the adjusting screw **fully clock**-**wise**, then **counter-clockwise** three full turns.
- 4. Carefully loosen the small pipe plug in the top of the indicator (9) housing until fluid appears around the threads. When only clear fluid (no air) is discharging re-tighten the plug.
- 5. Start the pump. The valve should open to a relatively low flow position.
- 6. Slowly turn the adjusting screw of the rate of flow pilot (3) **clockwise** until flow rate increases to the designated set point. Replace the protective cap.
- 7. Check the vacuum on the suction side of the

CHECK VALVE ACTION: In the event downstream

model 120-6PS

pump. If it is too hight, turn the adjusting screw of the vacuum control pilot **counter-clockwise** until the vacuum falls to the predetermined maximum.

8. Shut down the pump and observe that the valve closes.

MAINTENANCE

The 120-6PS requires little in the way of routine maintenance. However, the following checks, periodically performed, will do much to keep the valve operating properly and efficiently.

- 1. Check for leaks at fittings and around flanges and connections. Tighten as required.
- 2. Check to make sure the valve is maintaining the proper flow rate. Readjust as required.

TROUBLESHOOTING

In the event of malfunction of the 120-6PS, the following guide should enable the technician to isolate the cause of the problem and take the appropriate corrective action.

MAIN VALVE FAILS TO OPEN OR FLOW RATE TOO LOW (PUMP ON)

- 1. Isolation valve closed upstream or downstream of 120-6PS Open as required.
- 2. Needle valve (6) closed Open as required. See Adjustment Instructions.
- 3. Rate of flow pilot (3) adjusted too far counterclockwise — See Adjustment Instructions.
- 4. Vacuum control pilot (4) adjusted too far counter-clockwise See Adjustment Instructions.
- 5. Stem of rate of flow pilot (3) binding Disassemble pilot and determine cause. See the 2450 Pilot section of this manual.
- Stem of main valve binding or diaphragm ruptured — Disassemble main valve and determine cause. See the Model 65 Basic Valve section of this manual.

MAIN VALVE FAILS TO CLOSE (PUMP OFF)

1. Isolation valve closed downstream of 120-6PS

-Open as required.

- 2. Check valve (6B) stuck closed Repair or replace as necessary.
- 3. Check valve (6A) leaking Repair or replace as necessary.
- Main valve stem binding, seat deteriorated, or its diaphragm ruptured — Disassemble main valve and determine cause. See the Model 65 Basic Valve section of this manual.

FLOW RATE TOO HIGH (PUMP ON)

- 1. Needle valve (5) fully closed Open as required. See Adjustment Instructions.
- Rate of flow pilot (3) adjusted too far clockwise
 See Adjustment Instructions.
- 3. Stem of rate of flow pilot (3) binding or its diaphragm ruptured — Disassemble pilot and determine cause. See the 2450 Pilot section of this manual.
- 4. Check valve (6B) leaking Repair or replace as necessary.
- 5. Check valve (6A) stuck closed Repair or replace as necessary.
- 6. Main valve stem binding Disassemble main valve and determine cause. See the Model 65 Basic Valve section of this manual.

ITEM	OTY	DESCRIPTION
1	1	BODY
2	1	BONNET
3	1	SPOOL
4	1	DIAPHRAGM PLATE
5	1	SEAT RETAINER
6	1	SEAT RING
7	1	STEM
8	1	BUSHING, UPPER
9	2	DOWEL PIN
10	1	SPRING
11	1	SEAT DISC
12	1	DIAPHRAGM
13	1	O-RING, STEM
14	1	O-RING, SEAT RING
15	1	SNAP-RING SPLIT-RING, STEM
16	8	STUD
17	8	NUT,HEX
18	3	CAPSCREW, SEAT RETAINER
19	4	CAPSCREW, DIAPHRAGM PLATE
20	4	LOCKWASHER, DIAPHRAGM PLATE
21	1	BUSHING, LOWER (SS SEATS ONLY)
22	2	SNAP RING (SS SEATS ONLY)

Installation, Operating, and Maintenance Instructions

GENERAL DESCRIPTION

The OCV Series 65 is a hydraulically operated, diaphragm-actuated valve, *full port* valve. The globe configuration (Model 65) is available in sizes 1 ¹/₄" thru 16" and 24". The angle configuration (Model 65A) is available in sizes 1 ¹/₄" thru 12" and 16".

The Series 765 is the same as the Series 65, except that it is a *reduced port* valve. It is available only in the globe configuration in sizes 3" thru 24".

The diaphragm is nylon-fabric bonded with synthetic rubber and forms a sealed chamber in the upper portion of the valve, separating operating pressure from line pressure. A synthetic rubber seat disc forms a tight seal with the valve seat when pressure is applied above the diaphragm.

FUNCTIONAL DESCRIPTION

Because the Series 65/765 is a hydraulically operated valve, it requires a minimum line pressure of approximately 5 psig in order to function. The valve functions on a simple principle of pressure differential. The line pressure at the inlet of the valve is bypassed through the pilot control piping to the diaphragm chamber of the valve. This pressure, together with the valve spring, works against the pressure under the valve seat. Because the effective area of the diaphragm is greater than that of the seat, the valve is held tightly closed. As the controlling pilot(s) allow the pressure to bleed off the diaphragm chamber, the two opposing pressures begin to balance and the valve will begin to open. The valve can be used to perform a simple on-off function, or with the proper pilot system, a modulating, or regulating function.

Model 65/765

basic control valve

In cases where the line fluid is unusually dirty, or is otherwise unsuitable for operating the valve, an independent operating pressure source may be employed. The pressure available from such a source must be equal to, or greater than, line pressure.

INSTALLATION

In order to insure safe, accurate and efficient operation of the OCV control valve, the following list of checkpoints and procedures should be followed when installing the valve.

- 1. Make a careful visual inspection of the valve to insure that there has been no damage to the external piping, fittings or controls. Check that all fittings are tight.
- 2. Thoroughly flush all interconnecting piping of chips, scale and foreign matter prior to mounting the valve.

CAUTION: Take appropriate care to protect personnel and equipment when lifting the valve for uncrating and for installation. Use appropriate lifting equipment. Lifting eyes are provided on 8" and larger valves to facilitate this task.

- 3. Install the valve in the line according to the flow arrow on the inlet flange. The arrow should point downstream.
- 4. When installing flanged-end valves, use the proper number and size of flange bolts when installing the valve (see Tables 1 & 2). Make sure flange gaskets are of the proper material for the service. To ensure a tight seal, flange bolts should be tightened evenly in a criss-cross pattern. Tables 1 & 2 also shows the proper final torque values for the flange bolts.

Model 65/765

- 5. Allow sufficient room around the valve for ease of adjustment and maintenance service.
- 6. After the lines are filled with liquid, bleed all air from the diaphragm chamber. This can be done by carefully loosening a pipe plug in the bonnet until fluid begins to appear around the threads. When only clear liquid (no air) is flowing, retighten the plug.

In addition, it is highly recommended that:

- 1. Isolation valves (e.g., gate or butterfly) be installed on the inlet and discharge sides of the valve to facilitate isolating the valve for maintenance.
- 2. Pressure gauges be installed at the inlet and outlet sides of the valve to provide monitoring of the valve during initial start-up and during operation. The body side ports, if unused by the pilot system, provide a convenient connection for the gauges.
- 3. All valves larger than 6" be installed horizontally, i.e., with the bonnet pointed up, for ease of adjustment and maintenance servicing.

MAINTENANCE

The OCV control valve requires no lubrication and a minimum of maintenance. However, a periodic inspection should be established to determine how the fluid being handled is affecting the efficiency of the valve. In a water system, for example, the fluid velocity as well as the substances occurring in natural waters, such as dissolved minerals and suspended particles, vary in every installation. The effect of these actions or substances must be determined by inspection. It is recommended that an annual inspection, which includes examination of the valve interior, be conducted. Particular attention should be paid to the rubber parts, i.e., the diaphragm and seat disc. Any obviously worn parts should be replaced.

REPAIR PROCEDURES

In the event of malfunction of the OCV control valve, troubleshooting should be conducted according to the procedures outlined for the specific model of valve. Then, if those steps indicate a problem with the main valve, this section will outline the procedures necessary to correct the problem. Problems with the main valve can be classed in three basic categories:

1. VALVE FAILS TO OPEN

- a. Diaphragm damaged* See Procedure A
- b. Stem binding See Procedure B

2. VALVE FAILS TO CLOSE

- a. Diaphragm damaged* See Procedure A
- b. Stem binding See Procedure B
- c. Object lodged in valve See Procedure B

3. VALVE OPENS AND CLOSES BUT LEAKS WHEN CLOSED

- a. Seat disc damaged See Procedure C
- b. Seat ring damaged See Procedure D

*A diaphragm failure can prevent the valve from either opening or closing, depending on the flow direction. Most water service valves flow "under the seat", in which case a diaphragm failure will keep the valve from closing. On the other hand, most fuel service valves flow "over the seat", in which case a diaphragm failure will keep the valve from opening. To determine which you have, examine the bridge mark cast into the side of the valve body, and then compare it with the figures below.

IMPORTANT: Over the years, OCV has made significant design changes to the 3", 4", 8", 10" and 12" valves. Therefore, before ordering rubber kits or other parts, you will need to determine which style valve you have (old or new). This can be easily determined by looking at the valve *bonnet*. As shown below, old-style valves have flat bonnets; new-style valves (except for the 3" full port and 4" reduced port valves) have domed bonnets.

DOMED BONNET

For 3" valves, simply measure the *diameter* of the bonnet. Old-style bonnets have a 7-11/16" (195 mm) diameter; new style bonnets have an 8-3/4" (222 mm) diameter. That same 8-3/4" diameter flat bonnet is also used on the 4" reduced port valve.

PROCEDURE A: DIAPHRAGM REPLACEMENT

- 1. Wear appropriate clothing and equipment to protect the skin and eyes from exposure to the line fluid.
- 2. Isolate the valve from the system by closing upstream and downstream block valves.
- 3. Bleed all pressure from the valve.

WARNING! IT IS EXTREMELY IMPORTANT THAT ALL PRESSURE BE REMOVED FROM THE VALVE BEFORE DOING EVEN PARTIAL DISASSEMBLY.

- 4. Loosen one of the tubing connections on the bonnet. Allow any residual pressure to bleed off.
- 5. To minimize any possible fluid spillage, drain the upstream and downstream sides of the valve as much as possible. Unused side ports in the main valve body can be used for this purpose. They will bring the fluid level down to approximately the centerline of the piping.
- 6. Remove all tubing connected at the bonnet.
- 7. Remove the bonnet nuts.
- 8. Remove the bonnet. If the bonnet sticks in place, it may be loosened by rapping sharply around its edge with a rubber-headed mallet. NOTE: 8" and larger valves are equipped with eye bolts through which a chain can be fastened to aid in lifting the bonnet.
- 9. Remove the spring.
- 10. Remove the diaphragm plate capscrews and the diaphragm plate.
- 11. Remove the old diaphragm.

- 12. Making sure the dowel pin holes are in the proper location, place the new diaphragm over the studs and press down until it is flat against the body and spool.
- 13. Replace the diaphragm plate and the diaphragm plate capscrews.
- 14. Tighten all diaphragm plate capscrews snugly. See Table 4 for proper torque values.
- 15. Replace the spring.
- 16. Replace the bonnet and reinstall the bonnet nuts.
- 17. Tighten the bonnet nuts snugly using a criss-cross tightening pattern. See Table 3 for torque requirements.
- 18. Reinstall the control tubing.
- 19. Reopen the upstream and downstream block valves.
- 20. Before placing the valve back in service, perform the air bleed procedure described in the Installation section of this manual.

PROCEDURE B: CORRECTION OF BINDING STEM

- 1. Perform Steps 1 thru 9 of Procedure A, above.
- 2. Remove the spool assembly from the valve. NOTE: On smaller valves, this can be accomplished simply by grasping the stem and pulling upward. Valves 6" and larger have the top of the stem threaded to accept an eyebolt to aid in lifting the spool out of the body. 6" thru 12" valves are threaded 3/8-16. 14" and 16" valves are threaded 5/8-11. The 24" valve is threaded 3/4-10.
- Carefully examine both ends of the stem for deep scratches, scoring or buildup of mineral deposits. Polish the stem if necessary using a fine grade of emery cloth.
- 4. Similarly, examine and polish the upper bushing (in the bonnet) and the lower guide (in the seat ring).
- 5. Reinstall the spool assembly.
- 6. Reassemble the valve, following Steps 15 thru 20 in Procedure A.

PROCEDURE C: SEAT DISC REPLACEMENT

- 1. Perform Steps 1 and 2 of Procedure B, above.
- 2. With the spool assembly removed from the body, remove the seat retainer screws.

7400 East 42nd Place / Tulsa, Oklahoma 74145 USA / 918-627-1942 / 888-628-8258 / Fax 918-622-8916 e-mail: <u>sales@controlvalves.com</u> / website: www.controlvalves.com

Model 65/765

- 3. Slide the seat retainer off the lower end of the stem.
- 4. Remove the seat disc from its groove in the spool. NOTE: The seat disc may fit quite tightly in the groove. If necessary, it may be pried out using a thin-bladed screwdriver or similar tool.
- 5. Install the new seat disc in the groove.
- 6. Reinstall the seat retainer and tighten the seat retainer screws.
- 7. Reassemble the valve, following Steps 5 and 6 of Procedure B.

PROCEDURE D: SEAT RING REPLACEMENT

NOTE: It is rare for a seat ring to require replacement. Minor nicks and scratches in the seating surface can usually be smoothed out with emery cloth.

- 1. Perform Steps 1 and 2 of Procedure B, above.
- If you are working on a 3" or smaller valve, or a 4" old-style valve, follow Steps 4 thru 9, below.
- 3. If you are working on a new-style 4" valve, or any valve 6" or larger, follow Steps 10 thru 16, below.
- 4. Seat rings in the smaller valves are threaded into the valve body. To remove, you will need a special seat ring tool. One may be purchased from OCV, or one may be fabricated. (See Table 5 for details.)
- 5. Using the seat ring tool, unthread the seat ring from the body.
- 6. Remove the old o-ring from the counterbore in the body.
- 7. Install the new o-ring in the counterbore.
- 8. Using the seat ring tool, install the new seat ring.
- 9. Reassemble the valve, following Steps 5 & 6 of Procedure B.
- 10. Seat rings on larger valves are bolted into the body with socket head capscrews. In addition you will note that the seat ring is equipped with additional threaded holes that may be used for "jacking" the seat ring out of the body.
- 11. Remove the socket head capscrews.
- 12. Remove the old seat ring from the body by temporarily installing two or more of the capscrews in the "jacking" holes.
- 13. Install a new o-ring in the groove of the new seat ring. Lubricate the o-ring and outer seat ring wall with Vaseline® or similar lubricant.
- Control Valves...s

- 14. Install the new seat ring in the body, making sure that the capscrew holes line up.
- 15. Replace and tighten all the capscrews.
- 16. Reassemble the valve, following Steps 5 and 6 of Procedure B.

24" (600)

20

RECOMMENDED | RECOMMENDED VALVE NO. OF BOLT SIZE BOLTS TORQUE (FT-LB) TORQUE (N-M) SIZE (DN) 1 ¼" (32) 4 1/2-13 X 2.50" LONG 75 102 1 ½" (40) 4 1/2-13 X 2.50" LONG 75 102 2" (50) 4 1/2-13 X 2.50" LONG 75 102 4 5/8-11 X 3.00" LONG 204 2 1/2" (65) 150 3" (80) 4 5/8-11 X 3.25" LONG 150 204 4" (100) 204 8 5/8-11 X 3.25" LONG 150 6" (150 8 3/4-10 X 3.50" LONG 250 339 8" (200) 3/4-10 X 3.75" LONG 339 8 250 10" (250) 7/8-9 X 4.00" LONG 12 378 513 12"(300) 12 7/8-9 X 4.25" LONG 513 378 14" (350) 12 1-8 X 4.50" LONG 791 583 16" (400) 16 1-8 X 4.75" LONG 583 791 18" (450) 16 1 1/8" X 5.00" LONG 782 1061 20" (500) 20 1 1/8 X 5.50" LONG 782 1061

 TABLE 1

 FLANGE BOLTING REQUIREMENTS – CLASS 150 FLANGES

TABLE 2

1097

1488

FLANGE BOLTING REQUIREMENTS – CLASS 300 FLANGES

1 1/4"-7 X 6.00" LONG

VALVE	NO. OF	BOLT SIZE	RECOMMENDED	RECOMMENDED
SIZE (DN)	BOLTS		TORQUE (FT-LB)	TORQUE (N-M)
1 ¼" (32)	4	5/8-11 X 2.75" LONG	150	204
1 ½" (40)	4	3/4-10 X 3.00" LONG	250	339
2" (50)*	6	5/8-11 X 3.00" LONG	150	204
	2	5/8-11 X 2.25" LONG	150	204
2 ½" (65)	8	3/4-10X 3.25" LONG	250	339
3" (80)	8	3/4-10 X 3.50" LONG	250	339
4" (100)	8	3/4-10 X 3.75" LONG	250	339
6" (150)	12	3/4-10 X 4.25" LONG	250	339
8" (200)	12	7/8-9 X 4.75" LONG	378	513
10" (250)	16	1-8 X 5.50" LONG	583	791
12"(300)	16	1 1/8-7 X 5.75" LONG	782	1061
14" (350)	20	1 1/8-7 X 6.25" LONG	782	1061
16" (400)*	18	1 1/4-7 X 6.50" LONG	1097	1488
	2	1 1/4-7 X 5.50" LONG	1097	1488
18" (450)	24	1 1/4-7 X 6.75" LONG	1097	1488
20" (500)	24	1 1/4-7 X 7.25" LONG	1097	1488
24" (600)	24	1 1/2-6 X 8.00" LONG	1750	2375

* TOP TWO HOLES ON VALVE FLANGES ARE DRILLED & TAPPED. USE THE SHORTER BOLTS LISTED IN THESE HOLES.

TABLE 3 BONNET BOLTING TORQUE SPECIFICATIONS NEW-STYLE FULL PORT VALVES (SERIES 65)

					(-,	
VALVE	NO. OF	STUD	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	STUDS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
			FT-LB (N-M)				FT-LB (N-M)
1 ¼" (32)	8	3/8-16	31 (42)	8" (200)	12	7/8-9	378 (513)
1 ½" (40)	8	3/8-16	31 (42)	10" (250)	16	7/8-9	378 (513)
2" (50)	8	3/8-16	31 (42)	12" (300)	20	1 1/8-7	782 (1061)
2 ½" (65)	8	1/2-13	75 (102)	14" (350)	20	1 1/8-7	782 (1061)
3" (80)	8	1/2-13	75 (102)	16" (400)	20	1 1/4-7	1097 (1488)
4" (100)	8	3/4-10	250 (339)	24" (400)	28	1 1/2-6	1750 (2375)
6" (150)	12	3/4-10	250 (339)				

NEW-STYLE REDUCED PORT VALVES (SERIES 765)

VALVE	NO. OF	STUD	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	STUDS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
			FT-LB (N-M)				FT-LB (N-M)
3" (80)	8	3/8-16	31 (42)	12" (300)	16	7/8-9	378 (513)
4" (100)	8	1/2-13	75 (102)	16" (250)	20	1 1/8-7	782 (1061)
6" (150)	8	3/4-10	250 (339)	18" (300)	20	1 1/4-7	1097 (1488)
8" (200)	12	3/4-10	250 (339)	20" (350)	20	1 1/4-7	1097 (1488)
10" (250)	12	7/8-9	378 (513)	24" (400)	20	1 1/4-7	1097 (1488)

OLD-STYLE FULL PORT VALVES (SERIES 65)

VALVE	NO. OF	STUD	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	SCREWS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
. ,			FT-LB (N-M)				FT-LB (N-M)
3" (80)	8	3/8-16	31 (42)	10" (250)	16	3/4-10	250 (339)
4" (100)	8	7/16-20	50 (68)	12" (300)	20	1 1/8-7	782 (1061)
8" (200)	12	3/4-10	250 (339)				

TABLE 4 DIAPHRAGM PLATE CAPSCREW TORQUE SPECIFICATIONS NEW-STYLE FULL PORT VALVES (SERIES 65)

VALVE	NO. OF	SCREW	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	SCREWS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
			FT-LB (N-M)				FT-LB (N-M)
1 ¼" (32)	1	3/8-24 N	21.5 (29)	8" (200)	8	1/2-13 H	43 (58)
1 ½" (40)	1	3/8-24 N	21.5 (29)	10" (250)	12	1/2-13 H	43 (58)
2" (50)	4	1/4-20 A	6.3 (8.6)	12" (300)	12	1/2-13 H	43 (58)
2 ½" (65)	6	10-32 A	2.7 (3.7)	14" (350)	16	3/8-16 H	19.7 (27)
3" (80)	6	1/4-20 A	6.3 (8.6)	16" (400)	16	1/2-13 H	43 (58)
4" (100)	6	3/8-16 H	19.7 (27)	24" (400)	16	1-8 H	286 (383)
6" (150)	8	3/8-16 H	19.7 (27)				

NEW-STYLE REDUCED PORT VALVES (SERIES 765)

VALVE	NO. OF	SCREW	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	SCREWS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
			FT-LB (N-M)				FT-LB (N-M)
3" (80)	4	1/4-20 A	6.3 (8.6)	12" (300)	12	1/2-13 H	43 (58)
4" (100)	6	1/4-20 A	6.3 (8.6)	16" (250)	12	1/2-13 H	43 (58)
6" (150)	6	3/8-16 H	19.7 (27)	18" (300)	12	1/2-13 H	43 (58)
8" (200)	8	3/8-16 H	19.7 (27)	20" (350)	12	1/2-13 H	43 (58)
10" (250)	8	1/2-13 H	43 (58)	24" (400)	12	1/2-13 H	43 (58)

OLD-STYLE FULL PORT VALVES (SERIES 65)

						-1	
VALVE	NO. OF	SCREW	REC.	VALVE	NO. OF	SCREW	REC.
SIZE (DN)	SCREWS	SIZE	TORQUE	SIZE (DN)	SCREWS	SIZE	TORQUE
			FT-LB (N-M)				FT-LB (N-M)
3" (80)	4	1/4-20 H	6.3 (8.6)	10" (250)	12	3/8-16 H	19.7 (27)
4" (100)	6	1/4-20 H	6.3 (8.6)	12" (300)	12	1/2-13 H	43 (58)
8" (200)	8	3/8-16 H	19.7 (27)				

N = SINGLE HEX NUT ON VALVE STEM

A = ALLEN-HEAD CAPSCREWS

H = HEX-HEAD CAPSCREWS

TABLE 5 SEAT RING TOOL DETAILS

VALVE SIZE	VALVE SIZE	"A"	"B"	"C"	"D"	"E"	"F"
FULL PORT	RED. PORT	PIPE SIZE	MIN. LENGTH	SLOT WIDTH	SLOT DEPTH	# SLOTS	SPACING
1 1/4"		3/4	6"	3/8"	3/8"	2	180°
1 1/2"		3/4	6"	3/8"	3/8"	2	180°
2"	3"	1 1/2	7"	3/8"	3/8"	2	180°
2 1/2"		2	8"	1/2"	1/2"	3	120°
3" NEW	4"	2 1/2	9"	1/4"	3/8"	3	120°
3" OLD		2 1/2	9"	5/8"	5/8"	2	180°
4" OLD		3	10"	5/8"	5/8"	2	180°

7400 East 42nd Place / Tulsa, Oklahoma 74145 USA / 918-627-1942 / 888-628-8258 / Fax 918-622-8916 e-mail: <u>sales@controlvalves.com</u> / website: www.controlvalves.com

installation, operating, and maintenance instructions

rate of flow control pilot

GENERAL DESCRIPTION

The OCV Model 2450 Rate of Flow Control Pilot is a direct-acting, spring-loaded, diaphragm-type control pilot. It is available in bronze or stainless steel (stainless steel internals) construction, with either Buna-N or Viton elastomers. It is designed to maintain a constant, preset rate of flow through the main valve. It is manually adjustable by means of an adjusting screw located on top of the pilot. The 2450 is a constant-throttling device, maintaining precise, positive control of the main valve.

FUNCTIONAL DESCRIPTION

Basically, the 2450 controls the amount of pressure in the uper chamber of the main valve, hence the degree of opening or closing of the valve. The pilot senses the pressure differential across an orifice plate located on the inlet of the main valve. The upstream, or high pressure, side of the orifice plate is sensed under the pilot diaphragm and the downstream, or low pressure, is sensed above the diaphragm. The low pressure sense is assisted by the pilot spring. As the flow through the orifice plate increases, the differential pressure increases and begins to close the pilot. As the pilot closes, the pressure in the upper chamber of the main valve increases, causing the valve to close a proportionate amount in order to maintain the preset rate of flow. Conversely, as the rate of flow decreases, the pilot opens, allowing the main valve to open and compensate for the decrease in flow.

INSTALLATION AND ADJUSTMENT

The 2450 should be installed in the main valve control piping between either the ejector or the accelerator pilot (depending on valve model) and the downstream body tap. Flow should be in the direction indicated on the pilot body. Sensing lines (1/4" O.D. tubing) are installed from the downstream orifice flange tap to the

model 2450

upper sense tap of the pilot and from the upstream orifice flange tap to the lower sense tap of the pilot. Pilot adjustment is made with the adjusting screw located on top of the bonnet. Increase flow through the valve by turning the screw clockwise; decrease flow by turning the screw counterclockwise.

MAINTENANCE

Because of the simplicity of design of the 2450 pilot, required maintenance is minimal. Fitting and bolts should be periodically checked for tightness and the body should be inspected for damage or excessive buildup of foreign material.

TROUBLESHOOTING

Troubleshooting of the 2450 is equally simple. Major troubleshooting points are as follows:

- 1. To check for ruptured diaphragm, disconnect the low pressure sense line from both the pilot and the valve flange. Plug the flange tap and pressurize the valve. A continuous discharge of fluid at the open sense port indicates a ruptured diaphragm.
- 2. An indication of the pilot stem binding may be checked by removing the pilot bonnet and moving the stem by hand. If excessive drag is evident, disassemble and pilot and determine the cause.
- 3. An erratic pilot action can result from a blockage in the port area of the valve stem or in the counterbalance area. Detach the sense line on the bottom plug and remove the plug. Clean out the counterbalance chamber as required. To remove the stem, hold the bottom of the stem with screwdriver in slot and remove the screw securing the diaphragm plates. The seat/ stem assembly may now be removed through the bottom body port. Clean as necessary.

7400 East 42nd Place / Tulsa, Oklahoma 74145 -4744 USA / (918) 627-1942 / 888-OCV-VALV / FAX 918-622-8916 e-mail: sales@controlvalves.com / website: www/controlvalves.com

	(.											
								27	590717	1	HEX NUT	STN. STEEL
								26	320718	1	BUSHING	STN. STEEL
	~							25	610908 611908	1	O-RING	BUNA-N VITON
	(27)						24	611010	1	O-RING	VITON
	\sim		_		9			23	611011	4	O-RING	VITON
	\bigcirc							22	692002	1	CAP	BUTYRATE
	(26)	(2	25)					21	611011	1	O-RING	VITON
		~	\sim		(21)			20	611013	2	O-RING	VITON
		\sim						19	610912	1	O-RING	BUNA-N
		(17)						18	611116	1	O-RING	VITON
	G)			(2)			17	620712	1	CODDER PIN	STN. STELL
	0	<u>}</u>						16	530701	8	SKT HD CAPSCREW	STN. STEEL
	(16) (24	4)						15	685700	1	LOCK WASHER	STN. STEEL
		\leq						14	531700	1	HEX HD CAPSCREW	STN. STEEL
(5		$\partial \mathbb{Z}$					13	532702	4	FLAT HD SCREW	STN. STEEL
			Jam			-T		12	310725	1	PLUG	STN. STEEL
		-	<u>}</u>		- 1/8 N	P1		11	320816	1	ADJUSTING SCREW ADAP.	STN. STEEL
	0	<u> </u>						10	300710	1	SPRING RETAINER	STN. STEEL
	\odot (i	20)			······································	22		9	320724	1	ADJUSTING SCREW	STN. STEEL
	IS IL 1			Y H#		23		8	651408	1	SPRING	CR-V STEEL
	INLE	I			OUTLET			7	308702	1	LOWER DIAPH. PLATE	STN. STEEL
	3/8	NPT			3/8 NPT			6	308720	1	UPPER DIAPH. PLATE	STN. STEEL
			-0-					5	694004	1	DIAPHRAGM	BUNA-N/NYLON
	2		6					4	314720	1	STEM	STN STEEL
	IJ _	、 、			4			3	300706	1	ADAPTER	STN STEFI
	(12)			\odot			2	304730	1	BONNET	STN STEEL
	_			1/8 NP	Т			-	302702		BODY	STN STEEL
					•			ITEM	PART NO	ΟΤΥ	DESCRIPTION	ΜΑΤΕΡΙΔΙ
E					MATERIAL	TOLER/	ANCES			J	Control Val	
D						UNLESS NOT	ED			V	TULSA OKLAHOMA USA	102
С					1	$\begin{array}{c} XX \pm 015 \\ XXX \pm 002 \end{array}$	5					
B						ANGULAR ± MACH. FINISH	0.5° 1125		RATE	-0F-	FLOW CONTROL F	PILOT
Α					NO. REQ'D	DRAWN BY	DATE	SIZE			DRAWING NUMBER	REV
CHG	ECN	DATE	BY		SCALF	B.K.	11-9-07 DATE	Λ			2450	
	REVISIO	NS		REF DWG NO'S	1/2			M			2730	

								30	685760	1	SEAL WASHER	STN. S	TEEL
								29	530416	1	FLAT HD SCREW	STN. S	TEEL
	(22						28	310703	1	SEAT DISC	STN. STL	./BUNA
	(<u> </u>						27	590717	1	HEX NUT	STN. ST	TEEL
								26	320718	1	BUSHING	STN. S	TEEL
	\sim	<.						25	610908 611908	1	O-RING	BUNA VITC	A-N DN
	(27	$\mathbf{\lambda}$						24	611010	2	O-RING	VITC	N
	\bigcirc				9			23	611011	4	O-RING	VITC	ON
	\bigcirc							22	692002	1	CAP	BUTYF	RATE
	(26)	(2	25)					21	611011	1	O-RING	VITC	ON
								20	611013	1	O-RING	VITC	N
			\geq					19	610912	1	O-RING	BUNA	۹-N
		(1/					18	611116	1	0-RING	VITC	N
	Q				(2)			17	620712	1	CODDER PIN	STN. S	TELL
	0	$\sum_{i=1}^{n}$						16	530701	8	SKT HD CAPSCREW	STN. S	TEEL
	(16) (2	24)			(15) (6)			15	685700	1	LOCK WASHER	STN. S	TEEL
	\sim	\sim				\ \		14	531700	1	HEX HD CAPSCREW	STN. S	TEEL
(5							13	532702	4	FLAT HD SCREW	STN. S	TEEL
	~				1/9 NIC	т		12	310730	1	PLUG	STN. S	TEEL
(7)	-			1/0 IVF			11	320816	1	ADJUSTING SCREW ADA	P. STN. S	TEEL
(3)				(18)			10	300710	1	SPRING RETAINER	STN. S	TEEL
								9	320724	1	ADJUSTING SCREW	STN. S	TEEL
(FΤ						8	651408	1	SPRING	CR-V S	TEEL
	2/0							7	308702	1	LOWER DIAPH. PLATE	STN. S	TEEL
	3/0				J/O INP I			6	308720	1	UPPER DIAPH. PLATE	STN. S	TEEL
		E						5	694004	1	DIAPHRAGM	BUNA-N/	NYLON
C.		\frown			(28) (4)			4	314739	1	STEM	STN. S	TEEL
\subset	IJ	(19)			\bigcirc \bigcirc			3	300706	1	ADAPTER	STN. S	TEEL
		\sim			γ_{20}			2	304730	1	BONNET	STN. S	TEEL
		(12	25	29	30			1	302702	1	BODY	STN. S	TEEL
								ITEM	PART NO.	QTY	DESCRIPTION	MATE	RIAL
Е					MATERIAL	TOLER/	ANCES		\cap	·V	Control Val	VDC	
D						UNLESS NO	OTED ON ±015			· V	CUITLIOI V AI	103	
С						.XXX	±.005		PRES	SSU	RE REDUCING F	PILOT	
В							±.05°		Fک	KTR	A SENSITIVE TY	ΡF	
					NO. REQ'D	DRAWN BY	DATE	SIZE			DRAWING NUMBER		REV
A						B.K.	7-29-10						
CHG	ECN	DATE	BY		SCALE	CHKD BY	DATE	Δ			1340XS		
	REVISIO	ONS		REF DWG NO'S	1/2								

EJECTOR 126

DESCRIPTION

MODEL 126 EJECTOR

The Model 126 ejector is a simple tee fitting with a fixed orifice in its inlet port. It provides the proper supply pressure to the main valve diaphragm chamber, allowing various two-way control pilots to control the valve position.

MODEL 126 EJECTOR DIAGRAM

Brass Construction / Stainless Steel Construction

MATERIAL	PART NUMBER	P (NPT)	T-TUBE O.D.	STD. ORIFICE	USED ON VALVE SIZES
Brass	213100	3/8"	3/8"	.125"	1 ¼"-6"
Brass	214100	1/2"	1/2"	.188"	8"-10"
Brass	215100	3/4"	3/4"	.188"	12"-16"
316 Stn. Steel	213700	1/4"	3/8"	.090"	1 ¼"-6"
316 Stn. Steel	214700	3/8"	1/2"	.125"	8"-10"
316 Stn. Steel	215700	1/2"	3/4"	.188"	12"-16"

STAINLESS

SCHEMATIC SYMBOL

The Model 126 Ejector is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 127-3 Pressure Reducing Valve

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, OK 74145 email: sales@controlvalves.com • website: www.controlvalves.com

Check Valve 141-1

DESCRIPTION

The Model 141-1 Check Valve uses a spring-loaded poppet that will allow flow in one direction only. It is the primary component used on valves with a reverse flow check function. Flow is in the direction of the arrow on the check valve body.

Check Valves shown Stainless Steel & Brass

MODEL 141-1 Matrix

SCHEMATIC

MATERIAL	PART NUMBER	INLET/OUTLET (NPT)	LENGTH	USED ON VALVE SIZE
Bronze	681100	3/8	2	1 ¼"-6"
Bronze	681101	1/2	2 1/8	8"-10"
Bronze	681102	3/4	2 1/4	12"-16"
Stn. Steel	681700	3/8	2 5/16	1 1⁄4"-6"
Stn. Steel	681701	1/2	2 5/16	8"-10"
Stn. Steel	681702	3/4	2 7/8	12"-16"

The Model 141-1 Check Valve is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 94-3 Check Valve.

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, OK 74145 email: sales@controlvalves.com • website: www.controlvalves.com

Needle Valve 141-2

DESCRIPTION

The Model 141-2 Needle Valve is an adjustable restriction device installed in the control circuit tubing. The setting of the needle valve meters the flow into and out of the main valve diaphragm chamber, thus controlling the response speed of the main valve. Depending on the application, the needle valve may be used as a closing speed control, opening speed control, or both simultaneously.

Needle Valves shown Sizes: 3/4" & 1/4"

MATERIAL	PART NUMBER	INLET/OUTLET (NPT)	A	USED ON VALVE SIZE*
Brass	683100	1/4	2	1 1⁄4"-2"
Brass	683101	3/8	2 1/4	2 1⁄2"-6"
Brass	683102	1/2	2 5/8	8°-10"
Brass	683103	3/4	3 1/4	12"-16"
Stn. Steel	683700	1/4	2	1 1⁄4"-2"
Stn. Steel	683702	3/8	2 1/4	2 1⁄2"-6"
Stn. Steel	682704	1/2	2 5/8	8"-10"
Stn. Steel	683703	3/4	3 5/8	12"-16"

Note: Needle valve size may vary on valve application. Consult factory.

MODEL 141-2

MATRIX

NPT (Both Ends)

The Model 141-2 Needle Valve is shown on OCV Valve Schematics as:

EXAMPLE: Shown here on a MODEL 115-3 DIGITAL VALVE as separate opening and closing speed controls.

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, OK 74145 email: sales@controlvalves.com • website: www.controlvalves.com

Inline Strainer 123

DESCRIPTION

The 123 Inline Strainer installs in the inlet side port of the main valve, and protects the pilot system from solid contaminates in the line fluid. The screen prevents the entrance of particles into the pilot system piping while flow through the main valve washes the screen clean. Recommended use on petroleum valve applications where flushing or removal of the screen for cleaning is not practical or may be considered hazardous.

Strainer Shown Installed

DIMENSIONS

PART NUMBER	А	В	С	D	E	USED ON VALVE SIZE
660704	3/8	1/4	11/16	2 3/16	1 1/2	1 1/4"-6"
660705	1/2	3/8	7/8	2 1/4	1 1/2	8"-10"
660706	3/4	1/2	1 1/8	2 3/8	1 1/2	12"-16"

MATERIALS

Inline strainers are all-stainless steel construction.

SCREEN SIZE

Standard screen is 40 mesh. Other mesh sizes are available.

The Model 123 Inline Strainer is shown on OCV Valve Schematics as:

SYMBOL

SCHEMATIC

EXAMPLE: Shown here on a MODEL 115-2 Solenoid Valve.

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, OK 74145 email: sales@controlvalves.com • website: www.controlvalves.com

DESCRIPTION

The Model 155 Visual Indicator is a device that enables the user to determine the extent of opening of a control valve. It consists of an adaptor threaded into the center port of the valve bonnet, a rod threaded into the main valve stem, a sealing O-ring, and a protective clear plastic housing. The indicator rod moves as the valve opens and closes. It may be installed on virtually any OCV control valve, and can be done so without any disassembly of the valve itself.

WHERE USED - Standard on Series 94 Check Valves, Series 3330 Altitude Valves, and Series 22 Digital Control Valves. Optional on any other valve not employing a limit switch or position transmitter.

NUDEL 155 MATRIX	MATERIAL	PART NO. (BRASS\ ADAPTOR)	PART NO. (STAINLESS ADAPTOR)	VALVE TRAVEL (FULL STROKE)
- 1 <u>1"</u>	1 1/4" - 1 1/2"	255100	255700	3/8"
4	2"	255100	255700	1/2"
	2 1/2"	255100	255700	3/4"
() I	3"	255100	255700	1"
	4"	255101	255701	1 3/8"
1	6"	255102	255702	1 1/2"
■ B = 0	8" - 10"	255103	255703	2 1/2"
6 S	12"	255104	255704	3"
ALVE	14" - 16"	255105	255705	3 1/2", 4"
	24"	255109	255709	6"

ITEM	DESCRIPTION
1	O-Ring
2	Housing
3	Bushing
4	Adaptor
5	Stem

SCHEMATIC SYMBOL

Control Valves

EXAMPLE: Shown here on a Model 94-1 Check Valve

MATERIALS

Indicator Rod:

Adapter:

Housing:

O-Ring:

Monel

Brass (std.), Stainless Steel (optional)

Butyrate (1 1/4" - 6") Acrylic (8" and larger) alve Position Indicator

Viton® (std.) Buna-N, EPDM (optional)

TOLL FREE 1.888.628.8258 • phone: (918)627.1942 • fax: (918)622.8916 • 7400 East 42nd Place, Tulsa, OK 74145 email: sales@controlvalves.com • website: www.controlvalves.com

